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As a ubiquitous process in social networks, information dif-
fusion plays a central role in applications ranging from the 
spread of news and opinions1, the propagation of innova-

tions2, word-of-mouth viral marketing3 and change in behaviour4 
to product adoption5. A growing number of studies have revealed 
that information diffusion is a complex process shaped by such 
interacting factors as network structure6, information content7, 
human activity8, stochastic dynamics9 and even users’ behavioural10 
and sociodemographic characteristics11. These entwined factors 
give rise to the diverse structure of diffusion paths observed in the 
real world12–17, which obscures our understanding of the mecha-
nisms driving spreading dynamics.

To understand how different factors affect information diffusion, 
the ideal method is to design randomized controlled experiments 
in real-world social networks4,18–21. However, due to the difficulty 
and cost in implementing such in vivo experiments, in silico 
agent-based modelling in structured networks has been routinely 
employed as an alternative to simulate information spread22–26. 
Simplified epidemic-like models have been frequently used and 
applied in a wide range of studies such as influential spreader iden-
tification27–33, social recommendation1,3 and rumour containment34. 
In analogy to transmission of contagious diseases35,36, informa-
tion in epidemic-like models diffuses along social ties from per-
son to person, with diffusion events independent from each other. 
Following this rule, consecutive peer-to-peer diffusion can form 
large-scale deep information cascades lasting multiple generations. 
As such, these models are also referred to as independent cascade 
models in literature5.

Despite the widespread use of such epidemic-like models, the 
mechanism of biological contagion and information diffusion 
are fundamentally different. In contrast to epidemic processes in 
which exposures to infection result in passive transmission, social  

contagion is a deliberate action taken by individuals who receive 
information. Empirical studies have demonstrated that simple gen-
erative models inspired by epidemic processes fail to reproduce 
some key features of the observed diffusion trees14–17. For instance, 
contrary to the high frequency of occurrence of multi-generation 
cascades produced by epidemic-like models, such events were 
rarely observed in a range of online social platforms15–17. This criti-
cal discrepancy between observed and model-generated diffusion 
patterns indicates that a better understanding of how information 
spreads from person to person is required for the development of 
more realistic diffusion models.

Several generative models have been developed to reproduce 
the characteristics of real-world diffusion trees in different set-
tings13–15,37. For instance, a probabilistic model based on network 
clustering and asynchronous response time can generate the narrow 
and deep tree-like structure of the propagation of Internet chain 
letters14; a branching process incorporated with high variability of 
human behaviour can replicate realistic distribution of cascade sizes 
in viral marketing campaigns37 and a susceptible-infected-recovered 
(SIR) model in scale-free networks with appropriate parameter set-
tings can reproduce the distribution of structural virality (that is, 
the average distance between all pairs of nodes in a diffusion tree) 
for diffusion trees in Twitter15. Although these models successfully 
generated certain features of realistic diffusion trees, due to the 
unavailability of underlying social connections, most of them were 
not tested on the same social networks in which the observed diffu-
sion occurred. In particular, these models were unable to relate the 
propensity of a social tie to convey information to characteristics 
of the involved users and had to model the probability of diffusion 
between two users as either a constant or a random number drawn 
from a predefined distribution. This intuitive setting, simple as it is, 
has rarely been verified by empirical evidence. Even the literature 
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on complex contagion38 that studied the impact of the number of 
exposures on behaviour adoption does not reveal how information 
diffusion in a structurally heterogeneous social network depends 
on network attributes.

In this work, we explore the patterns of peer-to-peer informa-
tion diffusion in online social media, and aim to use these uncov-
ered patterns to develop a generative model capable to better 
reproduce the observed diffusion trees. Specifically, we focus on 
the relationship between the diffusion probability along a social 
tie and the numbers of connections (that is, degrees) of both 
the disseminator (also commonly named the spreader) and the 
receiver. To perform this analysis, detailed data of individual-level 
diffusion events and the associated social network structure are 
needed. In this study, we use datasets containing both real-world 
information flows and the underlying social relationships in three 
distinct online social platforms: a blog-sharing community—
LiveJournal (https://www.livejournal.com), and two microblog 
services—Weibo (https://www.weibo.com) and Twitter (https://
twitter.com). These detailed and large datasets allow us to exam-
ine the impact of social network structure on diffusion dynamics 
across diverse social platforms.

Results
Information diffusion in real-world social platforms. LiveJournal 
is one of the earliest online platforms designed to host and dis-
seminate personal posts. Every LiveJournal user maintains a friend 
list. The undirected friend relationship is reciprocal, and the entire 
friendship network, consisting of about 9 million users and 188 
million social ties, reflects the social relations among LiveJournal 
users. In LiveJournal community, users can get access to the posts 
published by their friends, and may refer to these posts in their own 
articles by including hyperlinks to the original posts. We therefore 
use the hyperlink reference to track the information flow from user 
to user. A total of 721,547 diffusion events following friend rela-
tionships during 14 February 2010 to 21 November 2011 were col-
lected. In addition, the total number of posts published by each user 
during the same period was recorded.

In contrast to LiveJournal in which social relationships are undi-
rected, Weibo and Twitter maintain directed social ties using a ‘fol-
low’ mechanism: one can follow other users without their consent. 
Particularly, users can get updates on the ‘tweets’ posted by their 
friends (that is, users they follow, or termed ‘followees’). Diffusion 
events between users are identified by the ‘retweet’ marker. The 
Weibo dataset contains 9,019,288 diffusion events, involving 
4,483,515 users. In addition, we analyse 43,099 retweets in Twitter 
about the discovery of Higgs boson among 67,680 users39. The 
social networks of Weibo and Twitter, consisting of the friends and 
followers of the users involved in retweeting, contain about 8 mil-
lion and 457 thousand users, respectively (see details in Methods, 
Supplementary Tables 1 and 2 and Supplementary Fig. 1).

Observed peer-to-peer information diffusion. We focus on the 
local structure of ego-networks formed by connections between 
users and their neighbours. For LiveJournal, these neighbours are the 
friends in one’s friend list; for Weibo and Twitter, these neighbours 
are users’ followers who can view their tweets. Once a dissemina-
tor posts an article or tweet, all neighbours in the ego-network get 
exposed to the information and become receivers who may further 
repost it to their neighbours (Supplementary Fig. 2). In real-world 
diffusion, most receivers exposed to content chose not to repost 
it15–17. Receivers might not repost the content because they saw it 
but decided not to share, or sometimes they might not even see the 
content due to overload. Receivers who do decide to share the infor-
mation with their followers are referred to as adopters. Although 
receivers who are not adopters do not contribute to information 
dissemination, they are crucial to assess the diffusion probability 

between users and to understand the dynamics of underlying infor-
mation spread processes.

We start by examining the probability of diffusion along a social 
tie connecting a disseminator with a degree kd to a receiver with a 
degree kr. For the LiveJournal platform, kd and kr are the numbers 
of friends in the undirected social network. For the directed social 
networks of Weibo and Twitter, kd represents the number of fol-
lowers of the disseminator (that is, in-degree) and kr stands for the 
number of friends the receiver follows (that is, out-degree). In both 
cases, kd is the number of receivers reached by the information, and 
kr is the number of potential information sources of the receiver. 
We group the links from the disseminators involved in the diffusion 
event to their receivers into a group R. The links in R encompass all 
observed diffusion ‘attempts’ of which only a subgroup is success-
ful. Another set S contains only links actively involved in diffusion 
cascades (that is, successful diffusion paths). Within the groups of R 
and S, we bin the links with a certain combination of kd and kr into 
subgroups Rkd ;kr

I
 and Skd ;kr

I
. As kd and kr are highly heterogeneous, 

the data bin is performed in the logarithmic scale, with ten bins 
in each dimension. Aggregation of links into bins is necessary to 
reduce the number of (kd,kr) combinations. Group size Skd ;kr

!! !!
I

 and 
Rkd ;kr

!! !!
I

 represent the numbers of links that match criterion (kd,kr) 
in Skd ;kr

I
 and Rkd ;kr

I
 (see Supplementary Fig. 3 for plots of Skd ;kr

!! !!
I

 and 
Rkd ;kr

!! !!
I

). Next, we define the average diffusion probability along 
social ties with kd and kr users as Λkd ;kr ¼ Skd ;kr

!! !!= Rkd ;kr

!! !!
I

. The quan-
tity Λkd ;kr

I
 represents the average fraction of the (kd,kr) links exposed 

to the content that were actively involved in the observed informa-
tion diffusion cascade (Fig. 1a–c).

The stripe pattern in the double-logarithmic scale of Fig. 1a–c 
suggests a power-law functional form of the diffusion probability 
Λkd ;kr ¼ ckαdk

β
r

I
. We fit the equation parameters using the 10 × 10 

data points in Fig. 1a–c. Specifically, we performed a linear regres-
sion to the function logΛkd ;kr ¼ α log kd þ β log kr þ log c

I
 (see 

Supplementary Table 3 for the fitted parameters). The power-law 
function explains the data well, as demonstrated in Fig. 1d–f where 
the data points kαdkβr

I
 are proportional to Λkd ;kr

I
.

Adjusting observational bias. Despite the good fitting, the data 
reported in Fig. 1a–c are in fact subject to an observational bias 
towards successful diffusion events and overlook unsuccessful dif-
fusion attempts. This observational bias is a major obstacle pre-
venting realistic modelling of information diffusion using passively 
observed data. To develop a more realistic cascade model for infor-
mation diffusion, this observational bias needs to be corrected.

Among the examined datasets, only the LiveJournal data con-
tain the number of posts published by each user, including those 
that were not reposted. To keep the analysis consistent across 
three platforms, in Fig. 1a, we show the diffusion probability in 
LiveJournal calculated using only the succeeded diffusion attempts, 
same as the analysis for Weibo and Twitter. However, given that 
we have access to all diffusion attempts in LiveJournal, the actual 
diffusion probability can be obtained by including all attempts into 
the denominator Rkd ;kr

!! !!
I

, which corrects the observational bias. For 
Weibo and Twitter, such information is unavailable. We therefore 
need an alternative approximation method to adjust the observa-
tional bias in the Weibo and Twitter datasets.

Here we propose a framework to adjust this bias using the Bayes’ 
rule. Define a diffusion attempt from a disseminator with a degree 
kd to a receiver with a degree kr as a (kd,kr) attempt. For each (kd,kr) 
attempt, we define the event ‘spread’ as a successful transmission 
and the event ‘observed’ as the attempt being observed (that is, 
included in the group of diffusion attempts R). Note that for Twitter 
and Weibo, a (kd,kr) attempt is observed if and only if the informa-
tion is reposted by at least one receiver. Because we only considered 
diffusion attempts of observed information in previous calculation, 
the diffusion probability Λkd ;kr

I
 is actually a conditional probability  
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Pkd ;kr ðspreadjobservedÞ
I

—the probability of successful diffusion 
among the (kd,kr) attempts of observed information. In model sim-
ulation, however, what we need is Pkd ;kr ðspreadÞ

I
—the probability of 

successful diffusion among the (kd,kr) attempts of any posted infor-
mation. Using the Bayes’ rule, we have

Pkd ;kr spreadð Þ ¼ Pkd ;kr observedð Þ
Pkd ;kr observedjspreadð Þ

Pkd ;kr spreadjobservedð Þ;

where Pkd ;kr observedjspreadð Þ
I

 is the probability of a (kd,kr) diffu-
sion attempt being included in R given the information success-
fully diffuses along the (kd,kr) link, and Pkd ;kr observedð Þ

I
 is the 

probability of a (kd,kr) diffusion attempt being included into Rkd ;kr
I

, 
no matter whether the information is reposted or not. According 
to the definition of Rkd ;kr

I
, if a (kd,kr) diffusion attempt succeeds, 

it would be definitely included in Rkd ;kr
I

. As a result, we have 
Pkd ;kr observedjspreadð Þ ¼ 1
I

, which leads to

Pkd ;kr spreadð Þ ¼ Pkd ;kr observedð ÞΛkd ;kr :

This relationship indicates that we can adjust the bias of the con-
ditional probability Λkd ;kr

I
 by multiplying a factor Pkd ;kr observedð Þ

I
.

To calculate Pkd ;kr observedð Þ
I

, the total number of articles/
tweets posted by each user is needed. This information is known 
for LiveJournal but unavailable for Weibo and Twitter. For 
LiveJournal, we group the diffusion attempts of all posted infor-
mation, whether reposted by other users or not, into an adjusted 
group of attempts, denoted by Ra. We calculate Pkd ;kr observedð Þ

I
 as 

the fraction of the (kd,kr) attempts in Ra that were actually reposted 
and observed in the group R: Pkd ;kr observedð Þ ¼ Rkd ;kr

!! !!= Ra
kd ;kr

!!!
!!!

I

 
(see values of Pkd ;kr observedð Þ

I
 in Supplementary Fig. 4a). The 

adjusted diffusion probability of LiveJournal is calculated by 
Λa
kd ;kr ¼ Pkd ;kr observedð ÞΛkd ;kr ¼ Skd ;kr

!! !!= Ra
kd ;kr

!!!
!!!

I

.
For Weibo and Twitter, the number of actual diffusion attempts 

is unknown. In principle, the factor Pkd ;kr observedð Þ
I

 cannot 
be calculated without this information. However, if the fre-
quency of posting activity for users with a given degree kd is not 
extremely heterogeneous, we can approximate Pkd ;kr observedð Þ

I
 as 

Pkd ;kr observedð Þ # Okd ;kr

!! !!= Gkd ;kr

!! !!
I

, where Gkd ;kr

!! !!
I

 is the number 
of (kd,kr) links in the social network and Okd ;kr

!! !!
I

 is the number of 
unique (kd,kr) links in Rkd ;kr

I
 (see Methods for details on the defi-

nitions and calculations, Supplementary Fig. 4b,c). The adjusted 
diffusion probability is estimated by Λa

kd ;kr ¼ Λkd ;kr Okd ;kr

!! !!= Gkd ;kr

!! !!
I

. 
To better illustrate this observational bias correction procedure, we 
introduce a concrete example in Supplementary Fig. 5.

We note that this approximation method only provides an upper 
bound for the adjustment factor Pkd ;kr observedð Þ

I
. In our following 

analysis, we performed a consistency check using the LiveJournal 
dataset, in which all published posts are available. Results obtained 
using all posts and the approximation method generally agree with 
each other. This consistency check provides additional credibility 
for our analysis on Weibo and Twitter datasets.

Alternative to the approximation method, in real-world appli-
cations, the adjustment factor Pkd ;kr observedð Þ

I
 could also be 

estimated by actively monitoring the activity of a sufficient num-
ber of sample users. All posts published by these users could 
be collected to better estimate the adjustment factor through 
Pkd ;kr observedð Þ ¼ Rkd ;kr

!! !!= Ra
kd ;kr

!!!
!!!

I

, similar to our analysis on the 
LiveJournal dataset.

Patterns of peer-to-peer information diffusion. We apply the 
method proposed in the last section to adjust the observational 
bias in the results reported in Fig. 1a–c. In general, after adjusting  
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Fig. 1 | The unadjusted diffusion probability Λkd ;kr
I

 following (kd,kr) links. a–c, For LiveJournal (a), Weibo (b) and Twitter (c) datasets, the diffusion 
probability is calculated as the fraction of successful diffusion events among observed diffusion attempts along social ties from a disseminator with a 
degree kd to a receiver with a degree kr. Colour indicates the logarithmic value of Λkd ;kr

I
 (base 10). The relationships between Λkd ;kr

I
 and kαd kβr

I
 are shown for 

LiveJournal (d), Weibo (e) and Twitter (f). Standard errors for α and β are reported in the parentheses. Each dot represents one (kd,kr) combination and its 
corresponding diffusion probability Λkd ;kr

I
 in a–c. Analyses are based on 721,547 diffusion events in LiveJournal, 9,019,288 diffusion events in Weibo and 

43,099 diffusion events in Twitter.
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the observational bias, the diffusion probability Λa
kd ;kr
I

 follows 
a power-law relationship with the disseminator and recipient’s 
degree: Λa

kd ;kr ¼ ckαdk
β
r

I
. We used the data for a 10 × 10 grid of kd and 

kr values in Fig. 2a–c, and performed a linear regression to the func-
tion logΛa

kd ;kr ¼ α log kd þ β log kr þ log c
I

. The fitted exponents are 
reported in Fig. 2d–f and Supplementary Table 4. Consistent with 
Fig. 2a–c, the exponent α is negative for all platforms; β is nega-
tive for Weibo and Twitter, but positive for LiveJournal. Figure 2d–f 
indicates that Λa

kd ;kr
I

 is proportional to kαdkβr
I

.
We find that dependence of the adjusted diffusion probability 

Λa
kd ;kr
I

 on kd is universal across all three platforms: the information 
posted by a highly connected disseminator is in fact less likely to be 
reposted by each of the followers (Fig. 2a–c). In other words, effec-
tiveness of the social network actors to spread information drops 
with their degree. We speculate that this counterintuitive result 
could be explained by the fact that recipients of content from highly 
connected individuals could perceive the information published 
by those ‘hubs’ as too widespread (and not sufficiently new)40. An 
alternative structural explanation could be that users connected to 
hubs are probably linked to multiple hubs active in posting and suf-
fer from information overload, which leads them to respond less to 
the content they receive41. We examined the probability of repost-
ing as a function of the number of posts each user was exposed to, 
and verified that the reposting probability generally decreases as 
the number of received information grows (Supplementary Fig. 6).

In contrast with the dependence of Λa
kd ;kr
I

 on kd, dependence of 
responsiveness of the users exposed to content on their degree kr 
differs for different platforms: it drops with increasing kr in both 
microblogging platforms (on the basis of directional networks) 
(Fig. 2b,c), but increases with kr in the undirected network of blogs 
(Fig. 2a). In microblog service, information from a large number 
of sources may compete for receivers’ attention and thus reduce 

the diffusion probability42–44. In particular, several studies have 
reported similar observations in microblog websites. For instance, 
it has been found that the finite ability to process incoming infor-
mation constraints social contagion in Twitter, and the probability 
of retweeting a URL decays as a power-law function of the number 
of friends45,46. In LiveJournal, however, information is more likely 
to be reposted by well-connected receivers. This dramatic differ-
ence is potentially caused by the distinct behaviour of users in blog 
communities. Specifically, it is possible that users of a blog-sharing 
community that uses reciprocal connections such as LiveJournal 
need to maintain a high frequency of posting to attract friends and 
achieve a large degree, as observed in other online content-sharing 
platforms47. As a result, well-connected users tend to be more 
actively involved in reposting in LiveJournal. In Supplementary 
Fig. 7, we show that the numbers of reposts of LiveJournal users 
have a stronger positive correlation with their degrees. In addition, 
the network directionality can reinforce this effect. In LiveJournal, 
the bidirectional links effectively limit social connections to mutual 
acquaintances, which is likely to increase the relevance of informa-
tion. Consequently, active LiveJournal users, typically with high 
degrees, tend to repost more frequently than Weibo and Twitter 
users who may suffer information overload and receive less relevant 
information. We leave identification of the reasons for the differ-
ence between the two kinds of platforms to further research.

We remark that the variation in the change of α after bias correc-
tion in different platforms does not undermine the validity of the 
method. Instead, it highlights the radical difference in users’ behav-
iour between different social platforms—a blog community and 
two microblog services. Such behavioural difference is encoded in 
the factor Pkd ;kr observedð Þ

I
, which should be uniquely defined for 

each platform. In this study, we did not attempt to show that all 
social platforms share the same diffusion pattern, but to develop a 
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Fig. 2 | The power-law relationship between peer-to-peer diffusion probability and users’ degrees. a–c, The adjusted peer-to-peer diffusion probability 
Λa
kd ;kr
I

 following (kd,kr) links for LiveJournal, Weibo and Twitter. The logarithmic values of Λkd ;kr
I

 (base 10) are represented by colours. While Weibo (b) and 
Twitter (c) share similar peer-to-peer diffusion pattern, LiveJournal (a) exhibits fundamentally different behaviour. d–f, The relationships between the 
adjusted diffusion probability Λa and kαd kβr

I
 for LiveJournal (d), Weibo (e) and Twitter (f). The fitted parameters α and β are reported with standard errors in 

the parenthesis. Analyses are based on 721,547 diffusion events in LiveJournal, 9,019,288 diffusion events in Weibo and 43,099 diffusion events in Twitter.
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generic method to estimate diffusion patterns in social platforms 
using available data.

Realistic modelling of information diffusion. The same 
power-law functional form describes peer-to-peer diffusion pat-
terns in all three systems despite considerable differences in plat-
form implementation, social mechanisms and user behaviours. We 
leverage this to develop more realistic models capable of reproduc-
ing the structure of observed diffusion trees. Considering that dif-
fusion of a single piece of information is stochastic and could result 
in diverse diffusion trees in different model realizations, we test 
performance of our models by examining generic structural prop-
erties of diffusion trees generated from numerous simulations. In 
particular, we focus on three features: (1) diffusion size N—the total 
number of users in a diffusion tree; (2) diffusion depth L—the larg-
est number of generations in a cascade and (3) structural virality 
D—the average distance between all pairs of nodes in a diffusion 
tree. The structural virality characterizes the high-level structure of 
diffusion trees: given the same diffusion size, a small D corresponds 
to a shallow and wide tree, and a large D corresponds to a deep and 
narrow tree15. Across three platforms, the diffusion size and depth 
follow heavy-tailed distributions, indicating that most observed 
diffusion cascades are small and shallow. Indeed, the structural 
virality of diffusion trees is limited to small values. This finding 
is in agreement with the results in other online social systems15,16.

We implement a data-driven simulation to reproduce informa-
tion cascades using parameters inferred from the fitted Λa

kd ;kr
I

 to 
kαdk

β
r

I
 (Methods and Supplementary Table 4). The simulation real-

izes the following two mechanisms. First, diffusion probability for 
each diffusion attempt accounts for the degrees of the disseminator 
(kd) and the receiver (kr) and is calculated through Λa

kd ;kr ¼ ckαdk
β
r

I
. 

Second, in compliance with existing literature8,14,17,37,48,49, response 
times of the realized diffusion attempts (that is, the time it takes for 
a receiver to repost the information) are drawn from a power-law 
distribution P(τ) = dτγ (Fig. 3). Such asynchronous response time 
has been reported in other social systems, and was used to model 
real-world information diffusion14,37. We confirm the distribution 
in our data and infer the response time power-law exponents (see 
Supplementary Table 5). Once a receiver reposts the information, 
he/she becomes a new disseminator and may trigger further dif-
fusion. The diffusion terminates when no reposting occurs. For 
comparison, two additional sets of simulations were performed. 
In the first, we ran a susceptible–infected–recovered model using a 
constant diffusion probability computed directly from the observed 
diffusion events (Λ ¼ Sj j=jRj

I
, the mean diffusion probability aver-

aged over all observed attempts; here R is the group of all diffusion 

attempts and S contains all observed successful diffusion paths); 
in the second, we ran a cascading model using the unadjusted 
diffusion probability Λkd ;kr ¼ ckαdk

β
r

I
 (Fig. 1 and Supplementary 

Table 3). For each set of simulations, we used the distribution of 
response time fitted specifically to the diffusion data collected from  
that platform.

Figure 4 shows distributions of diffusion size N, depth L and 
structural virality D generated by the simulations described before. 
Cascades produced by SIR models and simulations based on unad-
justed diffusion probability Λkd ;kr

I
 are substantially larger than the 

actually observed ones. The adjustment effectively reduces the 
discrepancy between the observed and model-generated distribu-
tions for all features. The distributions obtained from the adjusted 
model agree better with the observed distributions for all three sys-
tems. Although the examined social platforms differ considerably 
in their social mechanisms, the adjusted models provide a generic 
generative method to simulate online information diffusion. This 
close match of distributions also indicates that the approximation 
method for computing Pkd ;kr observedð Þ

I
 in Weibo and Twitter is 

effective. Certain discrepancies between the simulated and observed 
distributions of diffusion size, depth and structural virality still exist, 
which may be attributed to more complex factors not considered in  
the models.

As the structural features of diffusion trees are obtained after dif-
fusion terminates, response time does not affect the distributions of 
diffusion tree size, depth and structural virality. To further explore 
the impact of heterogeneous response time on simulated informa-
tion diffusion, we performed a comparison on the distribution of the 
lifetime T of diffusion trees, that is, time (in hours) between the post-
ing of the first and last post/tweet in a diffusion tree. Specifically, we 
generated diffusion events using both the response time distribution 
fitted to observations and a constant response time, set as the mean 
value of the observed response time. Results in Fig. 5 indicate that a 
homogeneous response time substantially shortens the lifetime of dif-
fusion trees. This analysis highlights the importance of using a realis-
tic response time distribution in simulating information diffusion49.

In application, it is desirable to estimate the parameters α and 
β using samples of diffusion events so that the peer-to-peer dif-
fusion pattern can be generalized to model information spread in 
the same platform. To check the generality of the power-law dif-
fusion pattern, we estimated the adjusted parameters α and β on 
the basis of 2, 4, 6, 8, 10 and 20% up to 100% of observed diffusion 
trees in three platforms. Supplementary Fig. 8 shows the estima-
tion results in the occasion where only the sampled diffusion trees 
were observed. Generally, the estimated parameters are close to the 
results obtained using all observed diffusion trees. This indicates 
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that it is feasible to learn the peer-to-peer diffusion pattern by sam-
pling a fraction of diffusion events.

Validation of the observational bias correction using LiveJournal 
data. To validate the observational bias correction applied to Weibo 
and Twitter, we performed a consistency check using LiveJournal 
data, for which all published posts are available. In particular, 

we estimated the parameters α and β using the actual diffusion 
attempts as well as the estimated adjustment factor, obtained using 
the same method applied to the Weibo and Twitter data. The 
estimated power-law exponents for LiveJournal are α = −1.22(2) 
and β = 0.29(2) using the actual attempts, and α = −0.94(2) and 
β = 0.23(2) using the approximation method. The diffusion pattern 
remains the same, and the estimated parameters generally match 
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their actual values in magnitude. Using the estimated parameters, 
we reran model simulations and compared the distributions of dif-
fusion size, depth, structural virality and diffusion tree lifetime with 
those obtained using actual parameters (Fig. 6). For each feature, 
distributions obtained using actual and estimated parameters gen-
erally agree with each other (see the power-law fitting parameters 
in Supplementary Table 6). Since the estimate of Pkd ;kr observedð Þ

I
 

is an upper bound, the diffusion trees generated using the esti-
mated parameters tend to be larger and deeper. This pattern is 
consistent with what we observed for Weibo and Twitter; that is, 
the model-generated diffusion trees are generally larger and deeper 
than observed ones. This consistency check provides additional 
validation of the observational bias correction method.

Discussion
In this work, we demonstrate that an independent cascade model 
incorporated with peer-to-peer diffusion patterns and a hetero-
geneous response time is able to generate key structural features 
of real-world diffusion trees. Compared with previous modelling 
works, our approach is more realistic as the model simulations were 
performed on the same social networks where the diffusion occurs 
and used parameters learned from the observation data. Given that 
information diffusion depends on a number of factors, it is sur-
prising that such a simple model can reproduce important statisti-
cal properties of realistic diffusion trees. One possible explanation 
may be that the effect of dominating factors, for example, activity 
frequency and local social network structure, has been implicitly 
reflected by the power-law peer-to-peer diffusion patterns.

The specific probability form ckαdkβr
I

 is directly derived from dif-
fusion data. For LiveJournal, which we have the full records of posts, 
this form is the true diffusion pattern. Some other studies have 
also reported the power-law dependence of diffusion probability 
on users’ degree45,46. On the basis of this evidence, the power-law 

diffusion pattern probably holds in a range of social platforms. 
The choice of this specific form is not based on assumptions but 
is supported by empirical diffusion data. Even using a power-law 
form, the structure of simulated diffusion trees can be far from 
that of those observed if the parameters are mis-specified. This is 
evidenced in the simulation using uncorrected parameters α and 
β. This failure to reproduce the observed diffusion trees using the 
unadjusted power-law function in turn demonstrates the impor-
tance of the observational bias correction. In a realistic model, two 
ingredients are necessary: (1) a correct form of diffusion prob-
ability derived from empirical data and (2) accurate estimation of 
parameters using observational bias correction. Without either of 
them, the model may not be able to generate realtistic diffusion 
trees. We note that, even if a model using a constant diffusion prob-
ability could reproduce the observed diffusion, this model is not 
realistic, as it contradicts the power-law form of diffusion probabil-
ity observed in empirical data.

This work contributes to the existing literature on information 
diffusion in two ways. First, we demonstrate that the diffusion 
probability along a social tie is a product of power-laws of degrees 
of the disseminator and the receiver. The power-law exponents are 
different across social platforms and can be inferred from observed 
diffusion events. Second, we propose a framework to account for 
the bias in observed diffusion data to develop a more realistic 
model. We adjust for the bias using the actual number of diffusion 
attempts for LiveJournal, and provide an approximation method 
for Weibo and Twitter. Information diffusion cascades generated 
by the suggested model fit the structural properties of the observed 
cascades in these systems.

Network abstraction of social systems differs from random mix-
ing because it allows for heterogeneity of exposure. Such models 
predict a very special role of hubs that ought to have dispropor-
tional effect due to the number of exposures they can generate. 
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Same kinds of models predict that agents having exceptionally high 
numbers of incoming connections are expected to be exposed to 
a large volume of information and receive that information early 
in the diffusion process50. In this work we enrich the now-classical 
network abstraction by adding an additional layer of heterogene-
ity that dramatically affects dynamics of information cascades. In 
particular, we demonstrate that the probability to share the infor-
mation received via social network tie depends on in-degree of the 
source node as well as the out-degree of the information recipient. 
The earlier factor could, for example, be considered as a proxy of 
the information uniqueness: information received from a network 
hub is less likely to be perceived by its recipient as unique and is less 
likely to be shared40. Simultaneously, social network users who fol-
low many sources experience information overload and have to be 
very selective about the information they choose to share42–44. These 
mechanisms need further empirical or experimental validations in 
future works.

In the proposed model, we assume that person-to-person dif-
fusion events are independent and neglect the effect of complex 
contagion; that is, exposure to information from multiple dis-
seminators simultaneously4,38. Nevertheless, as most diffusion 
events were reposted within a short response time (a few hours), 
it is reasonable to use an independent cascade model. In a recent 
experimental study that used Twitter bots51, it was found that 
complex contagion models outperform simple contagion models 
(that is, independent cascade models) in explaining information 
spread. However, the contagion models used in the comparison are 
equipped with a constant transmission rate, which is at odds with 
real-world diffusion. How to disentangle and evaluate the impacts 
of complex and simple contagion requires more detailed data or 
controlled experiments.

Our work focuses on diffusion that follows explicit social ties. 
Currently, we disregard other diffusion mechanisms that do not rely 
on social relationships such as broadcast and self-promotion15,17. 
Understanding their role in information spread dynamics in online 
social networks may require construction of hybrid diffusion mod-
els driven by multiple mechanisms. Further, quantification and 
inclusion of more specific features of information, for instance, 
novelty, validity or virality52,53, could possibly further improve 
understanding of information dissemination. In addition, whether 
similar topics in the same platform exhibit similar peer-to-peer dif-
fusion patterns needs exploration using more comprehensive data-
sets with text or hashtag information.

Methods
Data. In this study, we used datasets containing both information diffusion 
records and the associated social networks for three online social platforms—a 
community of bloggers, LiveJournal, and two microblog services, Weibo and 
Twitter.

In LiveJournal, each user maintains a friend list representing social ties to 
other users. The undirected friend relationships form the social networks among 
9,573,127 LiveJournal users. Users are notified of the posts published by their 
friends and may reference these posts in their own articles. These references 
reveal the diffusion cascades and allow direct observation of the information 
passed from one user to another. In the dataset, we identified 721,547 diffusion 
events that follow social ties during 14 February 2010 to 21 November 2011. 
These diffusion events form 357,749 diffusion trees involving 165,508 users. The 
number of posts published by each LiveJournal user during the same period was 
also recorded. In addition, we have collected the underlying social network that 
contained 188 million friendship relationships. This dataset has been previously 
used in analysing the pattern of information diffusion17,54.

In Weibo and Twitter, users keep track of the posts published by the users 
they follow. This enables information cascades on top of the underlying social 
network. We infer the person-to-person diffusion events in Weibo and Twitter 
using ‘retweet’ mentions. For Weibo, 9,019,288 diffusion events were collected, 
from which 397,445 diffusion trees containing 4,483,515 unique users were 
reconstructed. The social network structure, consisting of 7,977,942 users and 
700 million following links, was obtained by crawling the friends/followers 
relationships between the users involved in retweet. The Weibo dataset was 
released as the training data in an open challenge at https://www.dcjingsai.com/

v2/cmptDetail.html?id=166, and is publicly available. The Twitter dataset was 
collected by monitoring retweets on Twitter about the discovery of Higgs boson 
around 7 July 2012, when the news was announced. In total, 24,581 retweets 
diffusion trees were reconstructed from 43,099 diffusion events. The social 
network that includes the 67,680 users involved in retweeting activities contains 
456,626 unique users with 15 million following links. The Twitter dataset was 
used to explore to diffusion of scientific rumours39, and is available at https://snap.
stanford.edu/data/higgs-twitter.html.

In general, three types of diffusion exist in online social media17: social 
diffusion (that is, A retweets B, A follows B), broadcasting or mediated diffusion 
(that is, A retweets B, A does not follow B) and self-promotion (that is, A 
retweets A). In data preprocessing, all retweets that do not follow social links 
were discarded. Such operation removed broadcasting or mediated diffusion and 
self-promotion, but guaranteed that all retweets considered in the analysis were 
between neighbours in social networks.

Estimation of adjustment factor. We assume that users with the same degree 
kd have similar posting frequency in Weibo and Twitter. Define the adjustment 
factor Pkd ;kr observedð Þ

I
 as the probability of a (kd,kr) diffusion attempt being 

observed (that is, present in Rkd ;kr
I

). If each user with a degree kd posts n tweets 
during observation, the total number of observed diffusion attempts in Rkd ;kr

I
 

satisfies Rkd ;kr

!! !! ¼ nPkd ;kr observedð Þ Gkd ;kr

!! !!
I

, where Gkd ;kr

!! !!
I

 is the total number of 
(kd,kr) links in the social network (in the example in Supplementary Fig. 5, the set 
of all (5,3) links in the social network is G5,3 = {a→b, a→c, a→e, d→c, d→e}). To 
estimate Pkd ;kr observedð Þ

I
, the number of tweets posted by each user, n, is needed. 

Here, we approximate the lower bound of n using the repetition of links in the 
group of observed diffusion attempts Rkd ;kr

I
.

Supposing each user is allowed to post only one tweet (n = 1), the (kd,kr) links 
in Rkd ;kr

I
 would have no repetition, as each (kd,kr) link has only one chance to 

be observed. That is, Rkd ;kr

!! !! ¼ Okd ;kr

!! !!
I

, where Okd ;kr

!! !!
I

 is the number of unique 
(kd,kr) links in Rkd ;kr

I
. For n = 2, each user can perform two rounds of posting. In 

this case, some (kd,kr) attempts may be observed in only one round, thus we have 
Rkd ;kr

!! !!≤2 Okd ;kr

!! !!
I

. This inequality can be generalized to Rkd ;kr

!! !!≤n Okd ;kr

!! !!
I

 for n > 2. 
We estimate the lower bound of n by n≥ Rkd ;kr

!! !!= Okd ;kr

!! !!
I

, which quantifies the 
average repetition of (kd,kr) links in Rkd ;kr

I
. In the example in Supplementary Fig. 

5, this average repetition of (5,3) links in our example is |R5,3|/|O5,3| = 6/3 ≤ 2 = n, 
where R5;3 ¼ a ! bð Þ1; a ! cð Þ1; a ! eð Þ1; a ! bð Þ2; a ! cð Þ2; a ! eð Þ2

! "

I
 and 

O5,3 = {a→b, a→c, a→e}.
For Weibo and Twitter, little information of users’ posting activity is available. 

As a result, here we approximate n using its lower bound: n ! Rkd ;kr

!! !!= Okd ;kr

!! !!
I

. For 
disseminators with large kd, this approximation is more accurate, as their tweets 
are more likely to be reposted and observed due to a larger number of receivers. 
The adjustment factor Pkd ;kr observedð Þ

I
 is then estimated using its upper bound: 

Pkd ;kr observedð Þ ¼ Rkd ;kr

!! !!= n Gkd ;kr

!! !!" #
≤ Okd ;kr

!! !!= Gkd ;kr

!! !!
I

. Since Okd ;kr

!! !!≤ Gkd ;kr

!! !!
I

, it 
is guaranteed that Pkd ;kr observedð Þ≤1

I
. Even though Pkd ;kr observedð Þ

I
 is generally 

overestimated, this adjustment substantially reduces the discrepancy between 
the distributions of attributes of the observed and model-simulated diffusion 
trees. Using this approximation, the adjusted diffusion probability is estimated by 
Λa
kd ;kr ¼ Λkd ;kr Okd ;kr

!! !!= Gkd ;kr

!! !!
I

. This approximation turns out to yield satisfactory 
performance in model simulations. In Supplementary Fig. 4, we report the 
behaviour of the adjustment factor Pkd ;kr observedð Þ

I
 against kd and kr values. We 

found that Pkd ;kr observedð Þ
I

 also follows a power-law relationship with kd and kr: 
Pkd ;kr observedð Þ ¼ hkηdk

μ
r

I
 (Supplementary Table 7).

Model simulations. We performed model simulations in real-world social 
networks. For each social platform, 20,000 observed diffusion trees were 
randomly selected without replacement. We ran 100 independent simulations of 
contagion, each started from the root of each diffusion tree. In total, 2 million 
simulations were performed for each of the three versions of simulations: the 
SIR model, and cascading models with the unadjusted (Λkd ;kr

I
) and adjusted 

diffusion probability (Λa
kd ;kr
I

). For all three sets of simulations, we used the 
same power-law response time learned from the observed data. In the SIR 
model, the diffusion probability was set as the average value computed from the 
observed diffusion events, that is, Λ = |S|/|R|. The 95% confidence intervals in 
Figs. 4 and 5 were obtained by bootstrapping55. Specifically, from the simulated 
diffusion trees, we drew 104 random samples consisting of the same number 
(2 million) of diffusion trees uniformly with replacement, designating them as 
bootstrap samples. For each bootstrap sample, we calculated the distributions 
and confidence intervals of diffusion tree size, depth, structural virality and 
lifetime. The 95% confidence intervals in Figs. 3–6 were computed using the 
2.5 and 97.5% percentiles of the 104 bootstrap samples of the probability density 
corresponding to each x axis value.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Weibo and Twitter data are publicly available at https://www.dcjingsai.com/v2/
cmptDetail.html?id=166 (in Mandarin) and https://snap.stanford.edu/data/
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higgs-twitter.html. LiveJournal data are subject to restrictions for user privacy 
protection. Interested readers should contact L. Muchnik (lev.muchnik@huji.ac.il) 
to gain access to the LiveJournal dataset.

Code availability
Custom code that supports the findings of this study is available at https://github.
com/bnzu/main-code-of-rmis.
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